Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :


2007

ACL
doi
OpenAccess
HAL

P.Florian, N.Sadiki, D.Massiot, J.P.Coutures, 'A 27-Al NMR study of the structure of lanthanum and yttrium based alumino–silicate glasses and melts', J. Phys. Chem. B 111 9747-9757 (2007) doi:10.1021/jp072061q

We have investigated by 27Al nuclear magnetic resonance spectroscopy some compositions in the Ln2O3-Al2O3-SiO2 (Ln = Y or La) ternary phase diagram containing more than 60 mol % of SiO2. One- and two-dimensional high-field (17.6 T) high-speed (30 kHz) magic angle spinning experiments have been performed along with simulations of the spectra to quantify the amount of penta-coordinated aluminum present in those glasses as a function of composition. Very high-temperature experiments have allowed to follow selected samples from 2200 C down to 1700 C and hence to characterize the aluminum coordination state and dynamics in those liquids. The present study re-enforces the current view that "minor" species such as penta-coordinated aluminum are actually present in a considerable amount in aluminosilicate glasses, and high-temperature liquids at and above the charge compensation join. The high-field strength of Y3+ and La3+ reveal, for the first time in glasses, a different mean electric field gradient perceived by the tetra- and penta-coordinated aluminum environments. The movements responsible for the NMR relaxation of aluminum in the high-temperature liquid are shown to be uncorrelated with the movements responsible for the macroscopic shear viscosity. Results obtained both on glasses and in situ at high-temperature suggest a preferential localization of Ln3+ nearby tetra-coordinated aluminum species, with possible formation of tricluster and/or Ln3+ coordination changes.