Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :  


2020

ACL
doi
OpenAccess
HAL

Vincent Guigoz, Lavinia Balan, Abdelhay Aboulaich, Raphaël Schneider, Thomas Gries, 'Heterostructured thin LaFeO3/g-C3N4 films for efficient photoelectrochemical hydrogen evolution', Int. J. Hydrog. Energy 45 17468-17479 (2020) doi:10.1016/j.ijhydene.2020.04.267

The deposition of LaFeO3 at the surface of a graphitic carbon nitride (g-C3N4) film via magnetron sputtering followed by oxidation for photoelectrochemical (PEC) water splitting is reported. The LaFeO3/g-C3N4 film was investigated by various characterization techniques including SEM, XRD, Raman spectroscopy, XPS and photo-electrochemical measurements. Our results show that the hydrogen production rate of a g-C3N4 film covered by a LaFeO3 film, exhibiting both a thickness of ca. 50 nm, is of 10.8 μmol h−1 cm−2 under visible light irradiation. This value is ca. 70% higher than that measured for pure LaFeO3 and g-C3N4 films and confirms the effective separation of electron-hole pairs at the interface of LaFeO3/g-C3N4 films. Moreover, the LaFeO3/g-C3N4 films were demonstrated to be stable and retained a high activity (ca. 70%) after the third reuse.