Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :


2025

ACL
doi

K.Wang, J.Fu, S.Zhan, H.Dong, C.Lou, T.Sun, J.Liu, B.Huang, L.Tian, L.Jiang, R.Pang, S.Zhang, H.Luo, M.Allix, X.Kuang, S.Xu, H.Zhang, M.Tang, 'Boosting narrow-band near-infrared-emitting efficiency of thulium by lattice modulation for reflective absorption bioimaging', Chem 11 102325 (2025) doi:10.1016/j.chempr.2024.09.024

Near-infrared (NIR) luminescence materials with narrow-band emissions are essential for brain and muscle activity imaging based on the absorption difference of oxygenated proteins. However, most known NIR-emitting materials are limited by low external quantum efficiency (EQE) and broadband properties. This work presents the careful design of Tm, Na-doped strontium sulfide (SrS: Tm3+, Na+) phosphor for NIR light-emitting diode (LED), which shows a narrow emitting band of 27 nm. The successful incorporation of Na+ into SrS: Tm3+ contributes to the suppression of lattice phonons, resulting in significant improvement in EQE from 33.6% to 53.7% and an increase in thermal stability. The efficient host absorption and energy transfer are facilitated by the crystallographic Sr defects and the distortion in the symmetric crystal, disclosed by solid-state NMR, electron paramagnetic resonance (EPR), transient spectra, and X-ray total scattering analysis. Subsequently, efficient identification of vascular patterns based on the differential absorption of hemoglobin enables the potential application of rare-earth luminescent materials in NIR phosphor-converted light-emitting diodes (pc-LEDs) and bioimaging.