Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :  

2017

ACL
doi
HAL

Y.Gueguen, P.Houizot, F.Célarié, M.Chen, A.Hirata, Y.Tan, M.Allix, S.Chenu, C.Roux-Langlois, T.Rouxel, 'Structure and viscosity of phase separated BaO-SiO2 glasses', J. Am. Ceram. Soc. 100 1982-1993 (2017) doi:10.1111/jace.14642

Barium silicate glasses with 0 to 40 mol. % BaO were synthesized either by aerodynamical levitation and laser heating (at low barium content) or by conventional melting and quenching process. Characterization by means of Raman scattering spectroscopy and scanning transmission electron microscopy reveals a structural transition between glasses with low BaO content (< 10 mol%) showing an atomic network resembling the one of amorphous silica, and glasses with a BaO content larger than 10 mol. %, which exhibit the typical signature of a binary silicate glass with Q2 and Q3 units. Viscosity curves show a marked increase of the viscosity as the BaO content decreases below 20 mol. %. Barium is found to easily diffuse and to promote phase separation while silicon remains homogeneously distributed. A dramatic increase of the viscosity is observed as phase separation proceeds, resulting in the formation of Ba-rich nodules in a percolating SiO2-rich matrix at low barium content, or in Ba-poor nodules in a BaO-rich matrix at large barium content.