Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS
utilisateur non identifié |
Login
Home
Directory
Publications
Research
Facilities
Jobs - News
Access
Past members
CERAM
DEFIR
MatRMag
NAFMAT
OR2T
Common Actions
High-Temperatures Facility
Particles Beams Facilities
Vibr. Spectroscopies and Planex
NMR Facility
Softwares
National and European Facilities
all the instruments
Pelletron
Positons
Performances
IBA Techniques
Implantation and Irradiation
IR-RMN in Infranalytics
PANACEA Eu
850 MHz
Diffusion
NMR
dmfit NMR
focus (IR Optics)
Levitation
Electron Microscope
XRay and Neutrons
NMR
IR emission
RAMAN
Accelerators
RAMAN in situ
RAMAN high temp.
RAMAN imaging
News@CEMHTI
Jobs@CEMHTI
Seminars@CEMHTI
View CEMHTI Publication
Return to publication search...
Ask for a reprint
email :
I am not a bot ;-)
* Give your email
2019
ACL
doi
B.Diallo, M.Allix, E.Véron, V.Sarou-Kanian, I.Giboire, V.Montouillout, N.Pellerin
,
'Deconvolution method of 29Si MAS NMR spectra applied to homogeneous and phase separated lanthanum aluminosilicate glasses'
, J. Non-Cryst. Solids 503–504 352-365 (2019) doi:
10.1016/j.jnoncrysol.2018.10.026
The structural and microstructural properties of both homogeneous and phase separated lanthanum aluminosilicate (La2O3-Al2O3-SiO2 i.e. LaAS system) glasses were investigated. The microstructural observations and the structural characterization by X-ray Diffraction and by Nuclear Magnetic Resonance have highlighted the role of aluminum to favor a homogeneous vitreous aluminosilicate network by a high-level of Al/Si intermixing. A qualitative and simplified structure description is proposed from ²⁹Si nuclear magnetic resonance spectra assignment according to Qⁿ(mAl) species by controlling the deviation of chemical parameters. According to this approach, a homogeneous distribution of non-bridging oxygen in the aluminosilicate network and Al-O-Al linkages are considered for homogeneous glasses with high Al/Si atomic ratio. Phase separated samples are characterized by a low Al/Si atomic ratio inducing spinodal or nucleation/growth phase separation according to the depolymerization level. Homogeneity degree of the samples is discussed according to the intermixing level between silicon tetrahedra and aluminum polyhedra as a function of the proportion of Qⁿ and Qⁿ(mAl) species.