Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :


2020

ACL
doi
OpenAccess

Marcel Aebli, Laura Piveteau, Olga Nazarenko, Bogdan M.Benin, Franziska Krieg, René Verel, Maksym V.Kovalenko, 'Lead-Halide Scalar Couplings in 207Pb NMR of APbX3 Perovskites (A = Cs, Methylammonium, Formamidinium; X = Cl, Br, I)', Sci. Rep. 10 8229 (2020) doi:10.1038/s41598-020-65071-4

Understanding the structure and dynamics of newcomer optoelectronic materials - lead halide perovskites APbX3 [A = Cs, methylammonium (CH3NH3+, MA), formamidinium (CH(NH2)2+, FA); X = Cl, Br, I] - has been a major research thrust. In this work, new insights could be gained by using 207Pb solid-state nuclear magnetic resonance (NMR) spectroscopy at variable temperatures between 100 and 300 K. The existence of scalar couplings 1JPb-Cl of ca. 400 Hz and 1JPb-Br of ca. 2.3 kHz could be confirmed for MAPbX3 and CsPbX3. Diverse and fast structure dynamics, including rotations of A-cations, harmonic and anharmonic vibrations of the lead-halide framework and ionic mobility, affect the resolution of the coupling pattern. 207Pb NMR can therefore be used to detect the structural disorder and phase transitions. Furthermore, by comparing bulk and nanocrystalline CsPbBr3 a greater structural disorder of the PbBr6-octahedra had been confirmed in a nanoscale counterpart, not readily captured by diffraction-based techniques.