Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS
utilisateur non identifié |
Login
Home
Directory
Publications
Research
Facilities
Jobs - News
Access
Past members
CERAM
DEFIR
MatRMag
NAFMAT
OR2T
Common Actions
High-Temperatures Facility
Particles Beams Facilities
Vibr. Spectroscopies and Planex
NMR Facility
Softwares
National and European Facilities
all the instruments
Pelletron
Positons
Performances
IBA Techniques
Implantation and Irradiation
IR-RMN in Infranalytics
PANACEA Eu
850 MHz
Diffusion
NMR
dmfit NMR
focus (IR Optics)
Levitation
Electron Microscope
XRay and Neutrons
NMR
IR emission
RAMAN
Accelerators
RAMAN in situ
RAMAN high temp.
RAMAN imaging
News@CEMHTI
Jobs@CEMHTI
Seminars@CEMHTI
View CEMHTI Publication
Return to publication search...
Ask for a reprint
email :
I am not a bot ;-)
2021
ACL
doi
M.Gerardin, E.Gilabert, D.Horlait, M.F.Barthe, G.Carlot
,
'Experimental study of the diffusion of Xe and Kr implanted at low concentrations in UO2 and determination of their trapping mechanisms'
, J. Nucl. Mater. 556 153174 (2021) doi:
10.1016/j.jnucmat.2021.153174
The fission of uranium dioxide produces gaseous elements degrading nuclear fuel properties. A thorough understanding of the transport and release of gaseous products is thus essential. The present work focuses on xenon and krypton migration mechanism in uranium dioxide. Desorption experiments on ion implanted UO2 were performed at 1300°C. Xe and Kr releases were simulated using a mesoscale model that was developed taking into account single gas atom diffusion and defect traps. We showed that the defects have a high influence on Xe and Kr migration mechanisms and therefore have to be considered to accurately determine diffusion coefficients. We evaluated the diffusion coefficient of Xe and Kr at (1.73 ± 0.15)x10−20 m2/s at 1300°C and we showed that the diffusion of rare gases is subjected to two trapping mechanisms. The first occurs during the ion implantation and the second during high-temperature annealings. The nature of the trapping sites is discussed in the light of the literature on radiation induced defects. This study also consolidates the use of non activated UO2 implanted with heavy ions as a less-hazardeous substitute for irradiated UO2.