Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS
utilisateur non identifié |
Login
Home
Directory
Publications
Research
Facilities
Jobs - News
Access
Past members
CERAM
DEFIR
MatRMag
NAFMAT
OR2T
Common Actions
High-Temperatures Facility
Particles Beams Facilities
Vibr. Spectroscopies and Planex
NMR Facility
Softwares
National and European Facilities
all the instruments
Pelletron
Positons
Performances
IBA Techniques
Implantation and Irradiation
IR-RMN in Infranalytics
PANACEA Eu
850 MHz
Diffusion
NMR
dmfit NMR
focus (IR Optics)
Levitation
Electron Microscope
XRay and Neutrons
NMR
IR emission
RAMAN
Accelerators
RAMAN in situ
RAMAN high temp.
RAMAN imaging
News@CEMHTI
Jobs@CEMHTI
Seminars@CEMHTI
View CEMHTI Publication
Return to publication search...
Ask for a reprint
email :
I am not a bot ;-)
2023
ACL
doi
Khashayar Bagheri, Michael Deschamps, Elodie Salager
,
'Nuclear Magnetic Resonance for interfaces in rechargeable batteries'
, Cur. Op. Colloid Interface Sc. 64 101675 (2023) doi:
10.1016/j.cocis.2022.101675
Nuclear Magnetic Resonance (NMR) is a powerful technique to probe the local environment of atoms bearing a nuclear spin. Interfaces in a rechargeable battery, within multi-component electrode or electrolytes or between the electrodes and the electrolyte, are key to its function and lifetime. NMR spectroscopy of the solid phases in the battery participate in the understanding of the processes at these interfaces. The solid-state NMR community is still highly active for ex situ measurements. Dynamic Nuclear Polarization attracted interest thanks to its enhanced sensitivity. In situ spectroscopy and imaging prospered in the context of metallic Li or Na deposition, either as an ageing process in conventional Li or Na batteries, or as the primary process in a metal battery.