Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :


2024

ACL
doi
HAL

A.Urrutia, E.Salager, P.E.Cabelguen, R.Janot, J.N.Chotard, 'Investigation of sulphate hydride anti-perovskite as solid electrolyte', Solid State Ion. 409 116510 (2024) doi:10.1016/j.ssi.2024.116510

Over the last decade, anti-perovskites have drawn significant attention as potential solid-electrolytes for solid-state batteries. Due to the increase in consumption of lithium, there has been a push towards next generation batteries, including sodium-ion batteries. The first representative of the material class of sulphate hydride anti-perovskites, Na3SO4H, was synthesized by solid-state methods as a possible electrolyte for sodium solid-state batteries. Structural characterization confirms the results reported in literature with P4/nmm space group Thermal measurements (DSC and TGA) reveal the stability of the material up to 633 K with H2 release beginning shortly after. Here were report the first electrochemical measurements of this new sulphate hydride anti-perovskite with room temperature conductivity of 4.0 × 10−7 S/cm. Similarly, the electronic conductivity was also measured by Direct Current (DC) experiments to understand a non-linear Arrhenius plot of the conductivity. From the EIS and DC measurements, it is suggested that the electronic and ionic conductivities of this material fall in the same range at room temperature. Upon heating, the material becomes a mainly ionic conductor, explaining the change in the activation energy values in the Arrhenius plot (0.83 eV at low T and 0.24 eV at high T). Solid-state NMR hints at defects in the structure that correspond to Na1 and Hb-c-d dynamics.