Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS
utilisateur non identifié |
Login
Home
Directory
Publications
Research
Facilities
Jobs - News
Access
Past members
CERAM
DEFIR
MatRMag
NAFMAT
OR2T
Common Actions
High-Temperatures Facility
Particles Beams Facilities
Vibr. Spectroscopies and Planex
NMR Facility
Softwares
National and European Facilities
all the instruments
Pelletron
Positons
Performances
IBA Techniques
Implantation and Irradiation
IR-RMN in Infranalytics
PANACEA Eu
850 MHz
Diffusion
NMR
dmfit NMR
focus (IR Optics)
Levitation
Electron Microscope
XRay and Neutrons
NMR
IR emission
RAMAN
Accelerators
RAMAN in situ
RAMAN high temp.
RAMAN imaging
News@CEMHTI
Jobs@CEMHTI
Seminars@CEMHTI
View CEMHTI Publication
Return to publication search...
Ask for a reprint
email :
I am not a bot ;-)
* Give your email
2025
ACL
doi
Audrey Tixier, Cyrille Varona, Jean-Michel Brossard, Patrick Ganster, François Valdivieso, Jacques Poirier, Emmanuel de Bilbao
,
'Wear mechanism of oxide-bonded SiC refractory tiles in the combustion zone of waste-to-energy facilities'
, J. Eur. Ceram. Soc. 45 117016 (2025) doi:
10.1016/j.jeurceramsoc.2024.117016
Refractory tiles used in waste-to-energy facilities are exposed to high temperatures (Tflue-gas ≈ 1200 °C) and corrosive environment with gases and fly ashes. Post-mortem examination of refractory tiles from the combustion zone of waste-to-energy plants was conducted to understand the damage mechanism of the refractory material. Corroded refractory tiles from this area showed an important loss of matter and large cavities on the hot surface. Investigations highlighted the weakness of the refractory matrix of the material. In contact with slag deposit and corrosive gases, the bonding phase of the refractory material is dissolved and SiC grains are oxidized which causes the spalling of the hot face of refractory tiles.