Conditions Extrêmes et Matériaux : Haute Température et Irradiation
CEMHTI - UPR3079 CNRS

utilisateur non identifié  |   Login

View CEMHTI Publication

Return to publication search...
Ask for a reprint
email :


2011

ACL
doi

S.Neyshtadt, J.P.Jahnke, R.J.Messinger, A.Rawal, T.Segal Peretz, D.Huppert, B.F.Chmelka, G.L.Frey, 'Understanding and Controlling Organic Inorganic Interfaces in Mesostructured Hybrid Photovoltaic Materials', J. Am. Chem. Soc. 133 10119-10133 (2011) doi:10.1021/ja200054z

The chemical compositions and structures of organic inorganic interfaces in mesostructurally ordered conjugated polymer-titania nanocomposites are shown to have a predominant influence on their photovoltaic properties. Such interfaces can be controlled by using surfactant structure-directing agents (SDAs) with different architectures and molecular weights to promote contact between the highly hydrophobic electron-donating conjugated polymer species and hydrophilic electron-accepting titania frameworks. A combination of small-angle X-ray scattering (SAXS), scanning and transmission electron microscopy (SEM, TEM), and solid-state NMR spectroscopy yields insights on the compositions, structures, and distributions of inorganic and organic species within the materials over multiple length scales. Twodimensional NMR analyses establish the molecular-level interactions between the different SDA blocks, the conjugated polymer, and the titania framework, which are correlated with steady-state and time-resolved photoluminescence measurements of the photoexcitation dynamics of the conjugated polymer and macroscopic photocurrent generation in photovoltaic devices. Molecular understanding of the compositions and chemical interactions at organic-inorganic interfaces are shown to enable the design, synthesis, and control of the photovoltaic properties of hybrid functional materials.